出于保护自然环境的考虑以及全球面临的能源短缺现状,风力发电在全球范围内得到了加快速度进行发展。随着风电行业的技术进步,风力发电成本逐步降低,在经济性上已经能够与核能发电、水力发电展开竞争。当前,我国面临电力短缺局面,在煤电占主导地位的我国电力行业,因环境承载力限制以及各种各样的因素导致的煤炭短缺局面,煤电发展受到制约。而我国风能资源丰富,风能利用得到了政府的政策支持,风力发电产业面临前所未有的发展机遇。近几年来,我国风电产业高质量发展势头良好,多个大型风电场处于建设或规划阶段。
我国风电产业高质量发展尚存在诸多制约因素。就技术层面而言,大型风力发电设备生产技术不过关,大多从国外采购或引进技术生产,研发基础薄弱;对风电机组或风电场的运行特性的研究不足,设备正常运行管理上的水准还有待提升。将仿真技术大范围的应用于风力发电设备的设计、试验测试、运行分析等每个方面,将有利于加快我国风力发电技术的发展步伐,是缩小与发达国家技术差距的捷径。
随着风力发电在世界的广泛应用,为降低风力发电成本、提高风能利用效率,风力发电设备单机容量慢慢的变大,同时为风机的设计制造、控制管理系统设计和运行等各个方面提出了更多的研究课题。传统的实物测试研究方法已不能满足发展需要,仿真技术因不受气象条件的限制,且投入低等优点,逐渐在风力发电机组的研究和测试领域得到了越来越广泛的应用。
仿真即选取一个物理的或抽象的系统的某些行为特征,用数学模型来表示它们的过程,若用计算机求解数学模型,称为计算机仿真。通俗说来,仿真是指使用仪器设备、模型、多媒体技术,以及利用场地、环境的布置,模仿出真实系统的工作特性和环境,进而用于科学研究、工业设计、预测预报或教学训练等目的的一项综合技术。仿真若仅限于设计研究目的,则勿需仿真对象系统的环境,亦无实时仿真的必要,借助一台主流微型计算机和商业仿真软件即可开展仿线 年代初,国外学者开始将仿真方法用于风电机组的的性能研究[1] ,其后,仿真技术在风力发电系统的应用范围逐渐拓展。目前,从风电关键设备和控制系统的设计、制造、性能测试与研究,风电机组或风电场运行分析等各个方面均有仿真技术的应用。仿真技术的应用在很大程度上替代了传统的利用实际设备开展的设计检验等手段。主要的研究方向整理如下。
1)风能特性仿真,反映风能的位置分布和时间变化特性。风特性仿真结果将用于风力发电机组或风电场的仿真分析中,是风电仿线)风力发电机组仿真,仿真特定风力机组在风能变化下输出电能的变化规律,分析其特性,寻找设备本身存在的不足,提供改进建议。表征电能特性的参数主要包括有功功率、无功功率、电压和频率。
3)控制系统仿真,建立待检验的控制系统的仿真模型和控制对象的仿真模型,建立模型间的相互联系。改变仿真风电机组的风能参数或工作状态,测试在各种不同运行方式下控制系统的动作特性和工作效果,寻找控制系统模块设计中存在的问题,改进设计后修正仿真模型进一步验证,直到控制管理系统满足设计和运行要求。
4)风电场仿真,针对特定风电场的具体风能特性和实际(或规划设计)安装的风电机组情况,建立整个风电场的仿真模型。研究风能变化、风机介入或退出系统对风电场电能特性的影响,进而分析风电场建设的可行性,分析风电场不同运行方式下对电力系统的影响,或用于运行人员培训,提高风电场运行管理水平。
国内利用仿真技术开展风电系统研究的起步较晚,公开发表的仿真研究成果不多,尚未形成气候。近几年情况在发生变化,更多的研究人员已经将仿真技术引入风电系统的研究工作中,相信近期内将会有更多的高水平仿真研究成果发表,并能有力促进风电产业的技术进步。
与常规发电机组(如火电、水电、核电)相比,风力发电机组的突出特点是输入能量不受控制,这一特点导致风力发电机组在构成上与常规发电机组有着很大的不同且呈现出多样化特点。我们知道,常规发电机组的机械能-电能转换装置普遍采用同步发电机,而并网型风电机组采用的发电机则形式多样,如恒速恒频同步/异步发电机、交/直/交发电机、磁场调制发电机、交流励磁双馈发电机等。因采用的发电机类型不同,相应的控制管理系统区别很大,电能参数随风能变化的特性也有很大的不同。
仿真研究人员需要根据风力发电机组的特点开发针对性的仿真模型软件。限于篇幅,本文主要介绍共性部分的仿线 典型风力发电机组的仿真模型总体结构
在风电场中得到广泛应用的恒速风力机如图1 所示[2],异步发电机将风轮吸收的机械能转化成电能,发电机转速随发电量的变化而在一定范围内变化,因转速变化范围很小(1% 左右),通常称为恒速系统。恒速系统通常选用失速型调节方式。
一种典型的变速风力发电机组见图2,它采用双馈异步发电机(DFIG)。发电机的定子线圈直接与电网相连,转子线圈则通过滑环和电力电子逆变器与电网连接。因此,当风速变化引起发电机转速变化时,通过控制转子电流的频率,可保持定子频率的恒定,进而实现风力发电机组的变速运行。在高风速条件下,通过调整叶片桨距限制风力机的输出功率。
上述两种风力发电机组的仿真模型的总体结构分别表示在图3 和图4 中[3] ,变速风力机的控制管理系统要比恒速系统复杂得多,其仿真模型相应增加了桨距角、转速、端电压等控制器子模型和变频器的仿真模型。
描述风能特性的参数主要有风速、风向和风密度。风的密度主要根据风机所处的地理位置,气候平均状态随时间的变化也会产生一定影响,对于特定风机而言,风密度可以直接取自测量数据,并可忽略密度的变化;针对研究型的仿真应用,风向的变动可不予考虑,即假定风力机一直跟踪风向的变化。因此,我们主要关注风速的变化特性。
风因大气环流形成,风速是一个典型的随机变量。若不考虑风的方向性,风速是其空间坐标位置和时间的函数,即v=f(x,y,z,t) 。我们将描述某一区域风速的空域、时域分布变化特性的模型又称为风场模型(Wind Field Model)。严格说来,各空间位置上的风速因风的随机性、风场地形等因素影响而各不相同,因此,要建立一个准确的风场模型几乎是不可能的,有必要进行一定的简化处理。
若风场的地形相对平坦,周边空旷,则基本能认为在同一高度层上整个风场内各点的风速是相同的,这样做才能够将风场风速的三维空间模型简化为沿高度方向变化的一维模型。对于空间分布广,且地形复杂的大型风电场,可以将整个风场划分成几个区域,针对不一样的区域的风能特点建立简化的一维空间模型,形成分段集总式一维模型。风速空域模型转化为研究风速沿地平面高度方向的变化规律,借助空气动力学理论和风场测量数据,模型不难建立。
在时间维度上,大时期尺度(小时、天)的风速变化范围很大,且没有规律可循,只能根据风场监测记录数据拟合出风速变化模型。对于绝大多数仿真应用而言,我们不太关心大时间尺度的风速变化,而着重关注小时间尺度上的风速变化特性。在小时间尺度上观察,风速随时间的变化呈现出脉动变化的特点,即风速均值在一段时间内基本不变,风速在均值附近波动,国内外学者据此提出了各种描述风频分布的方法,如概率分布模型、瑞利分布模型、对数正态分布模型等[1] 。
需要说明的是,在建立风电场内各风力发电机组的仿真模型时,需要仔细考虑到风力机的尾流效应,即上游风力机对下游风力机流入风速的影响,影响关系和程度取决于风向、风速和风机安装的地方关系,此时,风力机的输出机械能通常由尾流系数予以校正。
Cp代表风力机能够从风能中提取出机械能的程度,它取决于风力机叶片的结构和运作时的状态,其数值由风机厂家提供。Cp主要是叶尖速比和桨距角的函数,即 :Cp=f(,),对于投入运行的风力机,叶片的洁净程度对Cp的影响很大,譬如叶片结冰、污物聚集等会改变叶片的气动外型,进而降低风能利用系数的数值。