雷火电竞地址

电力/充电桩

风力发电技术及其新型风机电控系统的应用

时间: 2024-06-18 17:00:25 |   作者: 电力/充电桩

详细介绍

  风能是很重要并储量巨大的能源,安全、清洁、充裕,能提供源源不绝而稳定的能源。“十五”期间,能源是作为发展重点的。后续能源包括核能、可再次生产的能源、氢能、燃料电池等,覆盖了除矿物能源以外的几乎所有能源领域,其中风能、太阳能为主攻方向。目前,利用已成为风能利用的主要形式,受到世界各国的格外的重视,而且发展速度最快。风能产业作为一个新兴的有前景的高新产业。2020年我国风电总装机容量要达到3000万kW的目标,为风能产业的发展提供了很大的空间。据统计,架设5公里电线及以后的电费投资,远大于太阳能的一次性投资,足以让您一劳永逸。

  有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,用蓄电池蓄能,以保证无风时用电;二是风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电;三是风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要发展趋势。而MW级风力发电技术早己开始研发。

  在架构上,风力发电系统中两个主要部件是风力机和发电机。风力机向着变浆距调节技术发展、发电机向着变速恒频发电技术发展,这是风力发电技术发展的趋势,也是当今风力发电的主要技术。

  应该说国内风电设备制造业的迅猛发展,国内市场可供用户选择的风机类型慢慢的变多,随之而来的是对风机稳定性和性能的关注。风机电系统的快速、可靠性和稳定能力特别大程度上决定了一款风机的成功与否,所以它是风力发电应用技术中的核心部件。而电控系统的性能主要根据所选方案和所采用的零部件。为此,本文主要对风力发电控制管理系统基本架构与风力发电应用中的电控系统控制器选择和应用作分析说明。

  图1为风力发电控制管理系统网络拓扑。从图1所知,风电机组电控系统是对风电机组自动启动、停机、平稳并网、双速切换、自动对风、数据检测和处理、故障记录及自动保护等就地控制功能。风电厂由三部分所组成:就地控制部分、中央集控部分与通信部分。根据不同风机的应用通信部分分为两部分:风机与风机间或风机与控制中心的网络通信部分与风机内部控制通信部分。

  从图1可知,风电作为典型的分布式控制系统,采用光纤及工业交换机组成环形网络结构,要求网络设备能在高粉尘、高寒、高热、强电磁环境中运行,实现宽带、可靠稳定的传输风机的各种参数。

  ⑴ SCOM3024是专对于电力系统高等级变电站设计的工业交换机。主要使用在在220kV、500kV、700kV超高压变电站继电保护系统中。

  ⑷ 采用了SCOM3000、KIEN2032、KIEN6000部件,其应用为:风机与风机间或风机与控制(检测)中心的网络通信部分;其KIEN6000部件应用在控制中心,完成风场SICOM3000等工业交换机数据落地,同时启用三层功能,与上级网络隔离。

  由于风电场单机容量小、数量多,为了确认和保证各台风力机的安全运行,风电场设置有先进的计算机监控系统,该系统一般由地面监控(或称就地监控-LCS)(可从图1看出)和中央监控(CMCS遥控)两部分所组成,其中就地监控主机可使用工控机(如ARK3382型),就地监控包括如下功能:

  ⑴ 运行人员可以从就地控制盘前计算机屏幕上了解到各台风力机的运作状况,如:该风力机处风速、发电机电压、电流、功率因数、主轴转速、齿轮箱及轴承温度等等。

  ⑵ 可以通过控制盘上的键盘,方便地修改风力机的保护定值,如过压保护整定范围,频率保护整定范围,风速极限值的修改等等。

  ⑶ 该控制管理系统能通过你自己所检测到的风速、风向情况自动发出开机寻找风向(即自动偏航)或停机的控制命令,同时还能进行自我诊断风力机是不是真的存在故障、是否需要停机。该系统还能对电网进行仔细的检测,如发现电网电压、频率工作不正常则立即停机,待电网回到正常状态后自动起动。

  ⑷ 该控制管理系统具有先进的记录功能,能记录所有发生过的故障或不正常运作时的状态,并告诉运行人员出现故障的时间。该系统还能进行产量报告,能记录该风力机的月发电量,及累计发电量和运行小时数。

  中央控制系统设在控制室内,通过监视器能了解到整个风场各台风力机的运作状况。中央控制管理系统除主机外,还有一套备用设备,可供主机故障时投入,可随时向人们提供所需的报告。

  其主要任务是控制风机根据风能的变化调整输出,以及风机在运行过程中的各种数据检测、系统保护、通讯等功能。整个控制管理系统的输入输出点数并不多,一般不多于300点。如对MW级风力发电机组控制管理系统的特点是点数不多(整个控制管理系统的输入输出点数并不多,一般不多于300点)以及数据计算量大,尤其是远程监控系统、故障检测及自复位功能的应用使控制器的数据计算量很大。由于同一时间不同优先级事件的存在,控制器一定要按照事件的重要程度执行不同的扫描周期。

  这些特点要求控制器具备高速度、支持多优先级多任务程序结构、支持高级算法等功能。此外,为保证系统各控制器与变频设备之间通讯的可靠性及实时性,控制器还必须支持现场总线及远程监控使用的工业以太网通讯。

  迄今为止,控制器解决方案由大量的微控制器和专有的总线系统组成。市场上常见的风力发电机控制器的开发能力已达到极限。在控制器、厂房生产计划系统和远程数据传输系统等各种功能单元的状况下,实现其接口互嵌是十分艰难的。另外,传统的控制器仅仅提供有限的资源,只可提供有限的监控和诊断功能。这必将不足以满足风力发电机和制造商一直增长的需求。用户十分期待拥有更好的分析和诊断设备。尤其在应用于风力电场时,电网公司对灵活的网络管理和快速的反映时间有着高要求。

  由于工控机提供的开发平台也是开放性的,它可以轻易地解决一直增长的、和外设相兼容的接口需求,是当今新型风电机组电控系统的理想选择。它能实现技术开发的首要目标,即达到提升发动机效能、减少载荷、增加操作便利性,由此减少成本、获取更多利润的目的。值此,以与嵌入式ARK3382无风扇工控机与KT98和KT97可编程控制器(PLC)为例作为风电机组电控系统的核心部件在风力发电中应用作介绍。

  当今作为自动化系统(如SCADA系统)是以计算机为基础基于工业以太网的生产的全部过程控制与调度自动化系统。它可以对现场的运行设备做监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能。各种采集信号及控制信号通过工业以太网汇总到其中最前端的数据汇总处理机嵌入式无风扇工控机。

  嵌入式工控机产品旨在为用户的开发应用提供更快速、更方便、更简单的解放方案。嵌入式设计、坚固的外壳、强大的计算技术,这些都保证了系统的稳定性和灵活性。该系列新产品能使用户得到满足对于强固、紧凑的工业计算平台的需求和能用来各种应用的内置I/O。其主要技术特征为:

  如ARK3382系列新产品的铝质外壳和散热片设计使系统不仅仅具备高散热性,而且具有高抗腐蚀性。这使设备在户外环境下运行时具有高可靠性。

  紧凑的嵌入式机箱没有一点风扇设备,如CPU风扇、系统风扇、电源风扇等。扩展MTBF设计极大减少了系统的维护需求。

  对于一般嵌入式电扇而言,线缆用于连接接口与CPU板。内部线缆常常因线缆破损、连接不良或安装错误而导致系统故障。

  凭借其板载CPU、内存、内存和加固的接口,如ARK3382系列新产品能够承载高达70G的冲击和7G的振动,并且符合MIL-STD-810F。此外,对于一些极易产生冲击与振动的环境,为实现更好高抗冲击性和高抗振性,DRAM可以选择性被固定在某个位置。

  嵌入式工控机有散热管和铝质散热片,能够支持-40℃~+70℃的宽范围工作温度。

  ② 为了满足多种应用需求,嵌入式工控机支持多种安装方法,如导轨式安装、壁挂式安装及桌面安装等。

  概括此类嵌入式无风扇工控机的特征是小体积发挥大功用。以上也这就是为何嵌入式工控机成为更好选择的依据。由于嵌入式无风扇工控机是系列的产品,选择了研华ARK3382系列嵌入式工控机。

  4.2 ARK3382嵌入式无风扇工控机为风力发电系统的前端电控系统的核心应用

  ARK3382能够给大家提供4个以太网的接口,在前端可以汇集更多的数据,在网络方面能采用链路聚合以及LAN Bvpass的网络技术(图2中黑色箭头所示),有效地提高了网络的传输效率和传输的可靠性。图2是ARK3382嵌入式无风扇工控机为风力发电系统的前端与网络技术应用示意框图。

  有良好的兼容特性,可以和下游的设备组成有机的连接。主频必须1G以上,还可以配合用户的程序稳定的运行。2个RS-232接口,一个USB接口。尺寸要求能够放在风机设备里面,重量轻。AT供电模式,直流供电,不能干扰其他的设备。

  由于设备要在风塔内运行,风塔内的环境比较严苛,要求温度-20℃~60℃,抗灰尘,无风扇设计,24小时不停机运行。要求带一个15监控屏,直流供电。

  由于风扇是在恶劣环境下最容易出问题的故障点,ARK系列工控机的无风扇特性大幅度的提升了机器的MTTF(平均无故障时间)。传导散热拥有良好的密封性,可以轻松又有效的隔绝灰尘腐蚀性气体对信号传导点的氧化作用而导致的宕机,减少维护费用,适合在电力监控点及DCS应用的高灰尘、气温变化比较大的无人职守场合使用。RK-3382使用的集成多网口all in one方案,不用再通过扩展方式,能节约成本。

  4.3 采用可编程控制器(如KT98和KT97)编程控制器风力发电系统的前端电控系统的核心应用

  该网络使用2台KT98分别作为机舱控制器和变桨控制器,1台KT97作为主控制器。他们的基本功能为:

  ⑴ 机舱控制器。负责处理各传感器(含风速风向仪)、输入输出点的信号采集、双馈变频器给定计算以及与双馈变频器、变桨控制器、主控制器之间的数据通讯。

  ⑵ 变桨控制器。处理变桨系统信号采集,负责进行变桨系统计算,生成变桨变频器,负责变桨变频器及机舱控制器、主控制器之间的数据通讯。

  ⑶ 主控制器。负责与机舱控制器、变桨控制器之间进行以太网通讯,远程监控系统通讯以及塔筒底部的信号采集。

  3个控制器之间采用以太网通讯,保证了通讯速率。控制器与变频器之间采用CAN总线MbVte/s。在保证速率的前提下,通讯可靠性也得到了提高。这样构成的控制结构具有分工明确、实时性强、稳定可靠的特点。KT98和KT97可编程控制器(PLC)为ABB AC31 90系列。

  风机并网发电是将风力发电机所发出的交流电经过整流逆变成交流电并馈送电网。同太阳发电一样,风力发电是新能源发电走向可持续发展的必由之路。

  风机并网发电系统通过把风能转化为电能,直接通过风力发电并网逆变器,把电能并到电网上。图3为风机并网逆变电源方案示意图。近年来,大型并网风力发电机组引入我国,大量风电机组安装在风资源丰富地区组成风电场,接入地区电网供电。

  风力发电专用逆变电源是太阳能、风力发电系统的核心部件,本电源针对新能源发电系统的特点设计制造,主要使用在于太阳能电站、风力发电站,风、光、油、蓄互补发电系统和户用太阳能供电系统。其工作原理见图4所示框图。

  其性能特点为:DSP芯片控制,智能功率模块组装,纯正弦波输出,输出稳压、稳频;具有过压、欠压、过载、短路、输入极性接反等各种保护功能,而逆变效率85%,具有交流旁路功能,输入输出优异的EMI/EMC指标,可配备RS232/485接口,是高可靠性、高效率的正弦波逆变电源。

  从以上分析可知,风机电控系统的核心部件控制器(嵌入式工控机)是用于风力机的监控和控制两个方面。该嵌入式工控机作为风力发电系统的前端,逐步取代由微控制器和专有的总线系统组成的传统控制器。由于它具有独特的优势,所以基于嵌入式工控机前端的风力发电控制管理系统是实现提升发电系统效能、减少成本、获取更多利润的有效途径。■

推荐产品